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Abstract. This paper presents an approach based on order statistics for speckle
and impulsive noise reduction in the 3-D ultrasound images. The proposed
technique uses the Rank M-type (RM) estimators and these ones are adapted to
3-D image processing applications. The theory and the real-time implementa-
tion of such a technique are presented and verified using real clinical ultrasound
images. The real-time implementation of 3-D image filtering was realized on
the DSP TMS320C6711. In addition, the results from known techniques are
compared with the proposed method to demonstrate its performance in terms of
noise suppression, fine detail preservation, and processing time criteria.
Keywords: Ultrasound imaging, Order Statistics Filters, RM-estimators.

1 Introduction

The ultrasound imaging has been considered as one of the most powerful techniques
for medical diagnosis and it is often prefer over other medical imaging modalities due
it is noninvasive, portable, and versatile [1-6]. It does not use ionizing radiations, and
is relatively low-cost. One of the areas where research in this field has addressed is the
fundamental problem of speckle noise influence, which is a major limitation on image
quality in dltrasound imaging [2].

Imaging speckle is a phenomenon that occurs when a coherent source and a nonco-
herent detector are used to interrogate a medium, which is rough on the scale of the
wavelength. Speckle noise occurs especially in images of the liver and kidney whose
underlying structures are too small to be resolved using long ultrasound wavelength.
The presence of speckle noise affects the human interpretation of the images as well
the accuracy of computer-assisted diagnostic techniques. As a result, speckle filtering
is a critical pre-processing step for feature extraction, analysis, and recognition from
medical imagery measurements [1, 2]. Current speckle and impulsive noise reduction
methods have been addressed in medical systems and others such as remote sensing,
communication, etc., to resolve the problem of noise during the acquisition and resto-
ration of image information in three dimensions [3, 4, 7-11]. "~
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The possibility to process 3-D images presents a new application where it is neces-
sary to improve the quality of 3-D objects inside the image, suppressing a noise of
different nature (impulsive, Gaussian noise, or may be by speckle one) that always
affects the communication or acquisition process [7]. Multiplicative (speckle) noise is
common for any system using a coherent sensor, for example, the ultrasound trans-
ducer [2-6]. Other problem that is not trivial is the adaptation and implementation of
the current filters, that have been investigated in different papers in the case of 2-D
image processing to process objects in 3-D by use multiframe methods to increase the
signal-to-noise ratio (SNR) [7, 12].

In this paper, we captured 3-D ultrasound images, these images are processed ap-
plying different non linear order statistics filters [8-11]. The Texas Instruments DSP
TMS320C6711 was used for implementing of the algorithms and obtaining the proc-
essing time needed in the case of each a 3-D filter [13-15]. Based on the processing
time values of each a 3-D filter, different configurations of sweeping cubes (voxels)
were used to obtain a balance between the processing time and quality of the restora-
tion of the 3-D images [7, 12]. The goal of this paper is the capability and real-time
processing features of the robust RM-KNN (Rank M-type K-Nearest Neighbor) filters
[16, 17] for the removal of speckle and impulsive noise in 3-D ultrasound images.
Extensive simulation results have demonstrated that the proposed filter can consis-
tently outperform other filters by balancing the tradeoff between noise suppression
and detail preservation. '

2 Proposed 3-D Filtering Scheme

In recent works [16-18], we proposed the combined RM (Rank M-type) —
estimators for applications in image noise suppression. These estimators use the M-
estimator combined with the R-estimator, such as the median, Wilcoxon or ABST
(Ansari-Bradley-Siegel-Tukey) estimator. It was demonstrated in [16] that the robust
properties of the RM-estimators exceed the robust properties of the base R- and M-
estimators for the impulsive and speckle noise suppression. The RM-estimators used
in the proposed 3-D filtering scheme are presented in such a form [16-18]:

Omeam = MED{X, (X, - MED{X}}i =1,..., N} (1)

Owir = N}EJD{% [x.0(x, -MED®))+ x @(x , - MED{R}) i= l,...,N} 2)
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where Gavs Owin» and G, pery are the Median M-type, Wilcoxon M-type, An-

sari-Bradley-Siegel-Tukey M-type estimators, respectively, X p are data samples
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=L,...,N, @ is the normalized function y: w(X)=X@(X), and X is the
primary data sample.

The family of RM-KNN type image filters has been designed by use the combined
RM-estimators (1), (2), and (3) to increase the robustness of the KNN filter. The
detail description of such a filtering scheme is presented in the recent works [16-18],
and in here we proposed its modifications for 3-D imaging purposes. So, the 3-D
RM-KNN (Rank M-type K-Nearest Neighbor) filters are defined in the following
way:

The 3-D MM-KNN (Median M-type K-Nearest Neighbor) filter [16]

Fie (i j,k) = MED{(i 41, j + m, k + )} @
the 3-D WM-KNN (Wilcoxon M-type K-Nearest Neighbor) filter [18, 20]

] i sl
7 G, j,k)=N§5D{h (1+IJ+m,k+n).+;1 (1+11,_1+m,,k+n,)} 5)

and the 3-D ABSTM-KNN (Ansan-Bradley -Siegel-Tukey M-type K-Nearest
Neighbor) filter [17]
h“”)(i+l,j+m,k+n), i,js-]!

2|
SSeraoli R =MER 1 o m ) eHi e moken) N <i N
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where A (i+1,j+m,k+n) and h(")(i+ll,j+ml,k+n,) are set of K .
values of voxels weighting in accordance with the used @ (X) influence function into
a rectangular 3-D grid of voxels that are closest to the estimation obtained at previous

step f('" ) ) (i, j k). The initial estimation is £,©) (#,j, k) = x(i, j,k) and

Taiz F ) o (I, ],k) denotes the estimate at the iteration w. x(i, j, k) is the 3-D im-

age contaminated by noise in the rectangular 3-D grid where i and j are the 2-D

spatial axes and K is the time axis (or third dimension). The filtering 3-D grid size is
2

N xN,xN;, N,=QL+1)" and I,,m,,n,=-L,....L. K, _(i,j,k) is

the current number of the nearest neighbor voxels, it reflects the local data activity
and noise presence and is determined by [16, 17]:

Kclo.re l J’ I.K + aDn (i’ j’ k)] S Kma.x (7)

min

where the parameter a controls the filter sensitivity to local data variance and details
detecting ability, K,,, is the minimal number of neighbours into the 3-D grid for -

noise removal and X, is the maximal number of neighbours into the 3-D grid for

edge restriction and detail smoothing. D, (i, J ,k) is the noise detector [16, 17]
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MED{|x(i, j, k)~ x(i +1, j +m,k+n)} 1 MADIx{i, j,k)}
— Fuiaa (®
MAD{x{i, j,k)} 2 MED{x{i +1, j +m,k +n)}
and MAD is the median of the absolute deviations from the median [9, 19].
The algorithm finishes when fpy7 f{) (l j,k) ('" X (1 _],k) (the subscripts

RMKNN denotes the MMKNN, or WMKNN, or ABSTMKNN filters). We use in the
proposed 3-D filters the following influence functions (9, 16, 19]: simplest cut, Ham-
pel’s three part redescending, Andrew’s sine, Tukey biweight, and Bernoulli. It was
demonstrated that the use of the such influence functions can provide good suppres-
sion of speckle and impulsive noise [9, 16, 19]. We also propose for enhancement of
the removal ability of MM-KNN filter in the presence of impulsive noise involving
the standard median filter. The numerical simulations have shown that for K, >7

the 3-D RM-KNN filters can be substituted by the 3x3x3 median filter and for
K c10se > 350 we can use the 5x5x35 median filter [18].

Several parameters that characterize 3-D RM-KNN filters and influence functions
were found after numerous simulations by means of use a 3x3x3 grid (i.e.,

N, xN,xN, =27, I,mn=-1,...1, and N, =(2L+])2 =9). The parameter a of

the filters controls the noise suppression and detail preservation, and parameters of
the influence functions can improve robustness of the filters [16]. We found that
Kmin=5 and K.n=24 for each a 3-D RM-KNN filter. The parameters of influence
functions were: Simplest cut, a=8, r=255; Hampel, a=8, a=200, =230, r=256;
Andrew’s sine, a=10, r=255; Tukey, a=10, r=255; Bemoulli, a=10, r=255. We
noticed that there can be existed some variations of about (5-10)% of PSNR and
MAE performances with the use of the other parameter values in comparison with
applied ones, and finally, we have standardized these parameters as the constants to
realize the real-time implementation of the 3-D RM-KNN algorithms.

D,(i,j.k)=

3 Overall 3-D Filtering Performance

The objective criteria employed to compare the performance of noise suppression of
proposed and comparative filters were the peak signal to noise ratio (PSNR) and for
the evaluation of fine detail preservation the mean absolute error (MAE) [7-11]:

2
PSNR =10-log) 225) | 4B )
MSE
1 NN .
MAE=—F— S3, j,k)=f(,j.k) (10)
N\N,N, ; Jg g. |
1 McNoim . P
where MSE=—— [S(i, Jyk)= f(i, J, k)]J is the mean square error,
NN,N; i3 522
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S (i, j,k) is the original free noise 3-D image, f (i, J ,k) is the restored 3-D image,
and N,,N,, N, are the sizes of the 3-D image.

During the investigations of 3-D filtering algorithms the ultrasound images were
contaminated by noise of different nature: speckle and impulsive ones. As it was
mentioned before the speckle noise is natural for ultrasound transducers. So, each a
3-D ultrasound image can contain this noise. The described 3-D RM-KNN filters
with different influence functions have been evaluated, and their performance has
been compared with different nonlinear 2-D filters which were adapted to 3-D. The
filters used as comparative ones were the modified a-Trimmed Mean [9, 22], Ranked-
Order (RO) (9, 11], Multistage Median (MSM1 to MSM6) (23], Comparison and
Selection (CS) [9, 11), MaxMed [24], Selection Average (SelAve) [9, 11], Selection
Median (SelMed) [9, 11], and Lower-Upper-Middle (LUM, LUM Sharp, and LUM
Smooth) [25] filters. These filters were computed according with their references and
were adapted to 3-D imaging.

The experiment 1 was realized by degraded an ultrasound sequence of 640x480
pixels with 90 frames (3-D image of 640x480x90 voxels) with 5, 10, 15, 20, and 25%
of impulsive noise and with the natural speckle noise of the 3-D image. Table 1
shows the performance results of proposed and comparative results filters applied to a
frame of the original sequence by use the xz plane. The table shows that the better
performances were obtained with the use of proposed filters when the noise level is of
15% or more. The LUM Smooth and MSMS5 can preserve the edges and fine details
in 3-D images for sufficiently small percentages of impulsive noise, but for higher
noise levels they lose the ability to suppress a noise.

Table 1. Performance results in a frame of ultrasound sequence degraded with impulsive noise.

Impulsive noise percentage

3-D Filters 5% 10% 15% 20% 25%
PSNR MAE PSNR MAE PSNR MAE PSNR MAE PSNR MAE
a Trimmed Mean 24.903 7.049 24912 7.104 24.832 7206 24715 7.348 24522 7.535
Ranked Order 26.502 6.672 26.449 6.745 26.376 6.834 26279 6942 26.136 7.084
MSM1 28.923 4.250 28515 4.454 27.740 4.796 26.685 5302 25331 6.047
MSM2 28.135 5062 27.806 5219 27.161 5518 26.187 6.004 24962 6.729
MSM3 27.461 5948 27.357 6.051 27.186 6210 26.880 6.461 26.435 6.821
MSM4 27942 5331 27.828 5403 27570 5557 27.134 5.809 26467 6.207
MSMS5 29.449 3.770 28.790 3.997 27.612 4.427 25985 S5.168 24230 6.238
MSMé6 28299 5069 28205 5.129 27993 5254 27.675 5445 27099 5.770
MaxMed 27.104 6.240 26227 6.833 24902 17774 23.248 9204 21.532 11.190
SelAve 26.839 6978 25268 9.195 23.744 11701 22344 14329 21.141 16.951
SelMed 27434 5636 27.028 5871 26675 6.109 26314 6.369 25906 6.682
LUM Smooth  29.943 2.756 28.936 3.128 27347 3.772 25261 4.879 23.027 6.573
LUM Sharp  17.368 17.282 16.503 18.861 16.015 19.894 15904 20.167 16.077 19815
LUM 18.538 15518 18235 16.202 17.850 17.081 17.599 17.684 17.517 17.866
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Figure 1 displays the visual results in terms of restored images obtained by the use
of different filters according to Table 1. In this figure one can see the better results in
noise suppression and detail preservation were obtained using the proposed filters.

. e)
Figure 1. Visual results in a frame of ultrasound sequence. a) original image, b) image

degraded by 25% of impulsive noise, c) restored image by LUM filter Smooth, d)
restored image by MSMG6 filter, ¢) restored image by filter MMKNN (Hampel).
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The experiment 2 was realized in the same sequence but it was degraded with 0.05,
0.1, 0.15, and 0.2 of variance of speckle noise added to the natural speckle noise of
the sequence. The performance results are depicted in Table 2 by use a frame of the
sequence. From this table one can see that the 3-D MM-KNN filters provide similar
results in comparison to Ranked Order and MSM filters, and in some cases the pro-
posed filters provide better results.

Other experimental investigations were connected with different voxels cube con-
figurations to provide better noise reduction [7, 12]. Figure 2 presents nine voxel
configurations used in the proposed 3-D filtering algorithms. It is obvious that by use
of less voxels in the different cube configurations the processing time is decreased.

In the experiment 3 the ultrasound sequence was degraded with 10, 20, and 30% of
impulsive noise. Then, we implemented the cube configurations in the proposed fil-
ters and the a-Trimmed Mean filter. Table 3 presents the performance results of MM-
KNN and a-Trimmed Mean filters in the case of use different cube configurations in
the xy plane of the sequence. We can observe from this table that the MM-KNN filter
provide better results in comparison with the a-Trimmed Mean filter. Therefore, we
observe that the cubes g and i improve the noise suppression when the noise level is
high, and the cubes a and b suppress efficiently the noise when the percentage of
noise is small.

Table 2. Performance results in a frame of ultrasound sequence degraded with speckle 'noise.

Speckle Noise Variance . -
3-DFilters 0.05 0.1 015 T 0.2
PSNR MAE PSNR MAE PSNR MAE PSNR MAE
Modified Trimmed Mean 20418 15.124 19.095 18.663 18.245 21.257 17.621 23.327

Ranked Order 21.587 14520 19.802 18.179 18.737 20.832 17.957 23.020
MSM1 20.568 17.624 18.061 23.684 16.592 28.104 15.589 31.521
MSM2 20484 17.789 18.038 23.725 16.574 28.152 15.562 31.619
MSM3 | 22421 14206 20.261 18456 18.890 21.704 17.932 24255
MSM4 21.697 15401 19.348 20.351 17911 24.100 16.906 27.076
MSM5 19.554 20.207 16.964 27.444 15478 32.608 14.431 36.801
MSM6 22083 14.688 19.744 19.374 18287 23.025 17.256 25.979

MaxMed 18.562 24206 15919 32913 14288 39.757 13.119 45.492
CS 15435 32.875 13.843 39.778 13.082 43220 12.587 45416
SelAve 21.182 17.647 19.192 22.814 17.875 26.865 16.955 30.038
SelMed 20.836 15.750 19.013 20.094 17.870 23.300 17.029 25.969
LUMSmooth 17.915 25.142 15440 33.823 14.001 39.991 13,010 44.771
LUMSharp 15.625 30.927 14.444 36.425 13.819 39.383 13.430 41228
LUM 15518 31.427 14379 36.748 13.784 39.559 13.418 41.324

MM-KNN CUT 21.554 15199 18.949 20.995 17.457 25.110 16.546 27.888
MM-KNN HAMPEL 21.572 15.169  19.040 20.798 17.671 24.571 16.934 26.809
MM-KNN SINE 21.399. 14614 18.640 20.226 17.101 24.310 16.048 27.474
MM-KNN BERNOULLI 22,658 13.309 20075 17.819 18253 21.460 16.884 24419
MM-KNN TUKEY 22.499 13446 19.855 18.125 18.302 21.543 17.357 23.890
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Figure 2. Different configurat® ‘ns of processing cube.

Table 3. Performance results by use different cube configurations in a frame of ultrasound
sequence degraded with impulsive noise.

Impulsive noise percentage
20%

Voxel configura-

10% 30%

tion
MMKNN Cut Filter
PSNR MAE PSNR MAE PSNR MAE
a 31.17535 364016  28.40849 4.53838  23.90324 6.99018
b 31.30555 3.76703  29.41062 4.41531 25.35587 6.33257
c 29.59351 479816  28.76898 5.28413 26.50147 6.49814
d 29.62101 470299  28.85542  5.15630  26.60073 6.35310
¢ 28.50828 480637  28.70908 5.28963 26.46848 6.50239
f 29.49613 481058  28.68377  5.29791 26.45389 6.51271
g 2897272 475225 2843172 523398  27.10414 6.13451
h 28.76109  4.88553 28.19258 538470  26.89461 6.29676
i 28.51900 4.56200  27.91900 513600  27.22200 5.81900
Modified a-Trimmed Mean Filter
a 30.07507 4.66202 2631513 697970 2228058 11.66430
b 30.85167 4.36141 28.23672 568776  24.16346 9.17320
c 29.63262  4.96245 28.74842 548613  26.13527 7.43995
d 29.73005 483643  28.87602 534850  26.23982 7.29035
e 29.53979 496895  28.68096 549478  26.09710 7.44773
f 29.51616 497610  28.65847 550289  26.08362 7.45916
B 28.65049 541481 28.29551 5.68411 26.86466 6.85965
h 28.40716 5.57233 28.03793 585165  26.64502 7.03270
i 26.03500 741100  25.74500  7.76400  25.21500 8.58600

Figure 3 presents the processed images by the use of MM-KNN filter with different
cube configurations, in these images we observe that the MM-KNN filter provides
impulsive noise suppression and detail preservation, and it can suppress the speckle
noise due the ultrasound transducer.
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4 Run-Time Analysis on DSP TMS320C6711

The runtime analysis of the 3-D RM-KNN filters and other concerned filters were
implemented by using the Texas Instruments DSP TMS320C6711 [13]. This DSP has
a performance of up to 900 MFLOPS at a clock rate of 150 MHz [13]. The filtering
algorithms were implemented in C language using the BORLANDC 3.1 for all rou-
tines, data structure processing and low level I/O operations. Then, we compiled and
executed these programs in the DSP TMS320C6711 applying the Code Composer
Studio 2.0 [14, 15].

f)

Figure 3. Visual results obtained by MM-KNN filter with the use of different cube
configurations in a frame of ultrasound sequence degraded with 30 % of impulsive
noise, a) original image, b) degraded image, c) restored image by a cube, d) restored
image by d cube, e) restored image by g cube, f) restored image by i cube.
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The experiment 4 was realized using an ultrasound sequence of 525x382x12 image
voxels. The sequence was degraded with 5, 10, 15, 20, 25, and 30% of impulsive
noise. Table 4 show the processing time values in seconds for the proposed filters and
other filters used as comparative in a frame of ultrasound sequence. The processmg
time includes the time to acquisition, processing, and storing data.

One can see from the Table 4 that the processing time for Selection Median and
Average filters have sufficiently small time values. These filters use the technique
that permits dividing the cube into two groups calculating the mean and median
fastly, but for LUM Smooth, LUM Sharp y LUM filters the time values are increased
during the ordering stage of 27 voxels. The processing time values for RM-KNN

-filters are large in comparison other filters. It is easy to see that processing time val-
* ues are increased but the performance criteria PSNR and MAE are sufficiently better
‘(see Table 1) for RM-KNN filters in comparison with other known ones.

| . - Finally, in the experiment 5 we processed the ultrasound sequence as in the ex-

periment 4 using the different cube configurations. Table S displays the processing
" time values in seconds for different cube configurations in the MM-KNN filter with
the Hampel and Cut influence functions. Analyzing this table we can conclude that
" applying the cube voxel configurations from a to f, it is possible to decrease signifi-
cantly the processing time and do not lose the quality of filtering (see Table 3).

- Table 4. Processing Time in seconds for 3-D filtering in the case of impulsive noise.

3.D Filters Impulsive noise percentage

s 5% 10% = 15% 20% 25% 30%
a Trimmed Mean 2.1716 21716 . 2.1716 2.1716 2.1716 2.1716
Ranked Order 1.6836 1.6836 1.6836 1.6836 1.6836 1.6836
MSMI 0.5846 0.5846  0.5846 0.5846 0.5846 0.5846
MSM2 0.5773 0.5773 - 0.5773 0.5773 0.5773 0.5773
MSM3 1.2681 1.2681 1.2681 1.2681 1.2681 1.2681
MSM4 1.2367 1.2367 1.2367 1.2367 1.2367 1.2367
MSMS5 1.2198 1.2198 1.2198 1.2198 12198 1.2198
MSM6 1.1667 1.1667 1.1667 1.1667 1.1667 1.1667
MaxMed 1.1981 1.1981 1.1981 1.1981 1.1981 1.1981
SelAve 1.9620 1.9620 1.9620 1.9620 1.9620 1.9620
SeclMed 2.3240 23240 . 2.3240 2.3240 2.3240 2.3240
LUM Smooth 4.122 4.705 5.355 5.754 6.047 7.123
LUM Sharp 4.224 4.812 5.469 5.867 6.165 1.257
LUM 4317 4915 - © 5.582 5.984 6.285 7.402
MM-KNN Cut 20.49 20.59 2061 2063 20.66 20.87
MM-KNN Hamp. 2051 20.53 21.02 21.26 21.26 21.75
MM-KNN Sine 21.09 21.74 - 21.99 22.24 22.48 22.71
MM-KNN Bemo. 21.94 22.01 22.25 2249 22.73 22.98
 MM-KNN Tukey 21.71 21.74 21.76 21717 2226 22.74
WM-KNN Cut 3978 - 4249 4491 44.92 44.99 45.17
WM-KNN Hamp. 38.54 40.19 42.62 45.06 46.05 47.55
ABSTM-KNN Cut 3115 32.39 324 - 36.80 37.07 39.70

ABSTM-KNN Hamp. 34.14 3552 36.63 38.00 38.08 42,13
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Table 5. Processing time for the MM-KNN filters in the case of different cube configurations.

Voxel MMKNN (Hampel) MMKNN (Cut)

configuration Impulsive Noise Percent
10 20 30 10 20 30
a 1.763 1.787 1.812 1,594 1.643 1.659
b 2053 2077 2101 1.866 1.908 1.916
c 4618 4.635 4.692 4807 4823 4872
d 4696 5.201 5.264 4754 5.199 5.252
€ 4.66 4628 4.690 4804 43816 4.869
f 4616 4642 4.693 4800 4830 4.871
g 9.939 10.04 10.06 10.06 10.06 10.06
h 9.969 10.02 10.04  10.05 10.07 10.08
i

2102 2126 2175 2061 2066 20.87

5 Conclusions

We have investigated novel 3-D order statistics filters modifying several known 2-D
ones for 3-D imaging. The experimental system, which allows the investigation of the
3-D objects in the ultrasound imaging has been designed. The RM-KNN filters have
the better performance in the most of cases suppressing the impulsive and speckle
noise, and preserving the fine-scale details in 3-D images. Different proposed cube
configurations of the voxels investigated in the paper permit to obtain the compro-
mise between filtering quality performances and processing time.
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